
Salesforce

Governance

Introduction 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 1

Salesforce Center of Excellence 	 	 	 	 	 	 	 2

Release Management Policy 	 	 	 	 	 	 	 10 

Technical Debt Policies 	 	 	 	 	 	 	 	 	 	 	 18

Data Governance	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 19

Metadata Governance	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 21

Integration Policy 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 27

Code Standards Documentation 	 	 	 	 	 	 	 	 	 	 	 	 	 	 29

Table of Contents

Salesforce IntroductionGovernance

The following document provides a general high-
level overview of best practices for Salesforce
Governance. This is not a comprehensive guide or
recommendation of a solution tailored to your
organization’s needs. It is intended as a guideline
and as a quick starting point to developing a
Governance Policy. The sections following the
Salesforce Center of Excellence will provide
further insight into certain subsections of the
Salesforce Center of Excellence.

1

CloudKettle recommends that all organizations leverage a Salesforce Center of

Excellence (COE) team structure for the best success with Salesforce projects and

ongoing support of the Salesforce org. Having a solid structured approach to

monitoring Salesforce releases will be critical when considering the future of

company acquisitions by an organization, and how existing employees at acquired

companies fit into the central team responsible for all Salesforce orgs. The following

illustration outlines the recommended structure to use:

The steering committee is made up of executive users who define the high-level

requirements for changes made to the system. The steering committee’s

responsibilities are to ensure that Salesforce functionality supports the company's

overall goals; they lead the COE from a high-level perspective.

Steering Committee

Salesforce Center of Excellence

Salesforce Governance

2

Project Management Office

Quality Assurance Team

Architecture Review Board

The project management office (PMO) governs and communicates the overall project

structure, and controls and owns all Project Management (PM) tools such as Jira,

Burndown Charts, etc. PMs as part of the PMO are responsible for communicating

project deadlines, working closely with the development team, identifying and trying to

alleviate blockers and ensuring an up-to-date project schedule based on the burn

down rate of current requirements.

In an agile release schedule PMs are responsible for creating sprints based on

approved business requirements. When deciding how much should go into a sprint,

PMs review the estimated length of stories and assign resources that are available for

that sprint to the tasks which need to be completed.

The quality assurance (QA) team works to ensure that thorough testing is done during

the development process and orchestrates a full end-user testing phase with the help

of the PM. QA sets standards for releases being delivered, defines what metrics need

to be met before accepting a story as completed, and executes on the actual test

scripts to give a non-biased test on work being done by the development team. QA

can help support automated testing, but within the context of Salesforce, automated

tests to support Apex code should be the responsibility of the development team.

The architecture review board reviews proposed solutions by the development team

and ensures they align with the overall system design to ensure a scalable Salesforce

ecosystem. They ensure all best practices are being followed when new projects are

being proposed. The review board could also be responsible for defining IT standards

such as how business and technical solutions should be formatted, as well as coding

standards that must be followed to ensure consistency in the ecosystem. Sometimes

these design best practices are broken out into a separate team referred to as a

“design authority”. However, in some cases, depending on tea size, the architecture

team may take responsibility for the design best practices.

3

Salesforce Governance

Development Team

Legal

End Users

Internal Releases

The development team is responsible for building the end product and creating the

solutions to particular business problems. The development team will often lean

heavily on the architecture review board for help on the best practices for design to

help pass the board’s approval on complex solutions. The development team is often

the largest team as this is the team executing on the business requirements. They

help give estimations to the project management team to forecast how long a total

sum of work will take. The development team can also support the overall dev ops

process for how automated deployment and testing (CD/CI) is configured. However,

this responsibility could be abstracted to a specific “DevOps team” if the complexity of

managing multiple pipelines becomes too high.

The legal team ensures that all regulatory and compliance needs are met and is

responsible for bringing up any potential problems with regulation that are known and

mitigated before a project moves forward. Having legal participation in the COE is

extremely important with the growing number of data governance laws that are

expanding in the global ecosystem.

The end users are the ones actually using the system. Although they would not be a

direct member of the COE and should not be involved in the day-to-day operation, their

input is critical. Ultimately, it is their satisfaction with Salesforce that will define the

adoption rate of the product. Helping increase the productivity and functionality of the

end users should always be a priority and any goals driven by the steering committee

should have that in mind. To get end user feedback it is important to have a way for

them to either fill out recurring surveys, submit cases or issues they see, or submit

ideas they may have. Interviews with end users once a year will help surface problems

that can later be turned into projects to deliver a better product.

To manage the process around deploying custom changes developed in-house,

organizations should adopt a strict Internal Release Protocol that tracks the entire

process from user requests and requirement gathering, to the creation and

completion of test cases.

4

Salesforce Governance

Implementing new metadata components such as new Process Builder automation or

Validation Rules can have a serious impact if developed and tested directly in

Production. To ensure any changes made do not interrupt business operations, all

internal development should be completed in a sandbox environment and tested

thoroughly before being deployed to a production environment.

Internal Releases should be on a set bi-weekly or monthly schedule, ensuring that the

Administrator has sufficient time to analyze the change requests, determine the best

approach, and test the feasibility in a sandbox environment. Enforcing a release

schedule safeguards the Administrator from creating quick-fixes on the fly, and sets

the expectation around Salesforce Change Management for the end users.

As a component of the Center of Excellence, a dedicated Salesforce Admin at the

organization should be tasked to read and review every new Salesforce release to be

aware of new features and functionality that will be available. Staying on top of the

releases will help mitigate any effects critical updates may have on a Salesforce org.

A Salesforce release management strategy increases productivity and deployment

velocity while decreasing costs and downtimes due to changes in the system.

A Salesforce Release Management Policy is necessary to support a well-defined

release management process that allows organization to streamline changes from

development to production. CloudKettle recommends following the Management

overview as shown below:

Salesforce Releases

Salesforce Deployment Process

5

Salesforce Governance

Requirement

Gathering

Requirement

Gathering

Requirement

Gathering

Planning and

Prioritizing

Requirement

Gathering

Build
Requirement

Gathering
Test

Requirement

Gathering

Communicate
Requirement

Gathering
Deploy

Salesforce Sandboxes

Version Control

Salesforce allows for the refreshing of sandboxes, which wipes all existing data in a

partial sandbox and creates a new version that replicates what is in the production

org. As a best practice, CloudKettle recommends using a partial copy sandbox as part

of the company’s deployment strategy. Having the partial copy sandbox that is

untouched and always kept in sync with production provides an environment with a

good amount of data and the same metadata configuration as production. This is an

ideal environment to test hotfixes before they get pushed to production.

The following chart gives a visual representation on how to map a GIT strategy to

various Salesforce environments. Ideally this would use the automated deployment

process described below:

Salesforce does not have built-in version control on its platform. Once any form of

work is deployed it immediately overrides the previous metadata that existed on the

platform without much of a historical trace of it ever being there. If the org was ever

customized in a way that stopped or halted the ability to make sales or provide

support, the only way natively revert to a previous version would be to manually track

down any changes made that may have caused this stoppage and work backwards to

try to resolve the issue.

6

Salesforce Governance

CloudKettle recommends leveraging either Github or BitBucket as an external version

control system. Having a version control system in place allows for the use of

continuous deployment and continuous integration which simplifies the deployment

process for every feature and also ensures for a significant reduction in errors as full

retention tests can be easily run for every change made to the org.

Continuous Deployment (CD) represents the process of deploying changes directly

from a version control system to your Salesforce environments. One of the most

overlooked components of Salesforce development is the time it takes to deploy

changes. Deployment can cause errors based on dependency conflicts, testing errors,

forgetting to add components, or Salesforce issues that are unpredictable. CD in

combination with Continuous Integration (discussed below) help identify these

potential problems far ahead of time and provide a system that reduces them from

happening in the first place.

The tooling that is used to support CD depends on preference and potentially the

version control system used, as BitBucket and Github both have their own CD/CI tools

built into their product. There are third party tools such as Jenkins that are popular for

this purpose but CloudKettle would highly recommend using either BitBucket’s

Pipelines or Github Actions to support the automation based on the triggering event of

merged pull requests.

Continuous Integration (CI) represents the process of running automated tests and

automated deployment verifications at either a given frequency or in real time when

changes are made to a version control system. CloudKettle recommends the best

practice of running CI against the org that is going to be merging every time a pull

request is created or updated (new commits). For example, if building in a feature

branch the next org to push to is the UAT org. When a pull request is created to move

the feature to the UAT branch, there should be validation in place that all Apex tests

and Jest tests (LWC Testing) need to pass. There should also be deployment

validation that succeeds in order to be allowed to merge the pull request from feature

to UAT. This ensures that new features can be assessed in development and potential

Continuous Deployment

Continuous Integration

7

Salesforce Governance

negative impacts can be reviewed before updates are deployed. This significantly

reduces development time, as it will reduce bugs and make them known while

development is still ongoing.

The release cadence should have a set of meetings that ensure all required

stakeholders have the appropriate understanding of the scope of each deployment. A

deployment will happen every other week or once a month based on how often an

organization plans to deploy any enhancement or an upgrade.

The deployment meeting will be held to mitigate business impact of unforeseen errors

or issues during a release. It is the responsibility of the Salesforce Admin/Release

team to communicate the deployment window to all users and ensure all required

stakeholders have the appropriate understanding of the scope of each deployment.

CloudKettle recommends deployments occur on Tuesday, Wednesday, or Thursday to

allow for resources to be available to help troubleshoot if issues arise. For guidance

on structuring the Release Management Process, see CloudKettle’s Release

Management Policy Template.

Org Handbook

CloudKettle recommends that in addition to the documentation of releases, an Org

Handbook should be maintained.

An Org Handbook documents the entirety of the Salesforce org and is used to

maintain institutional knowledge of systems and processes. At a minimum the

handbook is recommended to cover the following items:

Release Cadence

Salesforce Documentation Standards

8

Salesforce Governance

https://www.cloudkettle.com/wp-content/uploads/2021/07/CloudKettle_SF_Release_Management_Policy_Template.docx
https://www.cloudkettle.com/wp-content/uploads/2021/07/CloudKettle_SF_Release_Management_Policy_Template.docx

� Org Architecture Diagra�

� Data Flow Diagra�

� Integrations, webforms and all other sources of data being transferred in an out

of Salesforc�

� MQL and SQL processes for the or�

� Lead conversion & Sales Processes�

� High level summary of Automation and processes in the or�

� For complex and multi-stage processes, explain the interaction and expected

outcome/use case of the automation�

� High level summary of the use case for all third party integrations

Incident Reporting Logs/Policy

In the event of unplanned downtime or feature failure, etc an incident response and

reporting policy needs to be drafted.

The policy will cover steps to triage the issue and a contact chain to action the issue

based on severity and the timing of the incident to assure that the appropriate person

is contacted to solve this issue.

Once the incident is resolved, a retrospective should occur in which the incident is

reviewed and the sequence of events is documented and reviewed to identify gaps in

process or issues that lead to the incident in question. This meeting should include

stakeholders, project managers and Salesforce Team members.

Incident reporting is never to be treated as a disciplinary, or tribunal to assign blame.

Incidents are not uncommon and often under-reported or swept under the rug. It is

important to foster a culture where incidents are treated as a learning experience and

studied to improve existing processes. Incidents that are not studied and reviewed will

likely occur again.

9

Salesforce Governance

General Recommendations

Business Requirements Documentation and Product
Backlog

The appropriate Release Management Policy will be dependent on the level of

complexity and the needs of your org. For example an org where custom Apex

Classes and triggers will require some sort of code repository for version control,

whereas an Org that uses the Flows and Clicks not Code functionality can maintain a

Release Model using in board Salesforce tools.

At a minimum CloudKettle recommends flowing a Sandbox Management process

such as the one covered in the previous Sandbox Section. Upon deciding on a

Sandbox and deployment process, adopting Salesforce’s Dev Ops Center to track

sprints will formalize and apply structure to the policy. In addition, Deb Ops Center will

maintain versioning of Salesforce MetaData for approval and promotion to the next

Sandbox.

Users should leverage a business requirement document to request additional

functionality in Salesforce. The document needs to be templated and provide a

guideline to creating a ticket/feature request.

There should be two templates, one for a bug report and another for a new feature

request. The document should contain the following:

Bug Report�

� Details of the reques�

� When did the issue occur�

� Steps to replicate the issu�

� Screenshot of Error/issu�

� The business impact of the issue�

� Is there a work around?

Release Management Policy

Salesforce Governance

10

https://docs.google.com/document/d/1JTJZfAKIRKU_N1eDmgwS_EvsnsBQ2T5cnMSPhfPlb78/edit#heading=h.4tj7x9lf1dq
https://trailhead.salesforce.com/content/learn/modules/devops-center-quick-look

Feature Request�
� Functional details of the reques�

� New feature or Improvement�
� What is the desired outcome of the changes�

� The business impact of their request (including justification of importance�
� What pain-point does this solve�
� Does this request save time/simplify an existing process?

These documents should be readily available to assist users, and an email account,
such as salesforce@[yourcompanyname].com should be set up to receive all
requests. Alternatively, cases or an external ticketing system can be used to capture
the requests. CloudKettle strongly recommends that an issue & project management
tool such as Jira is used to track, prioritize and action these requests.

These requests will make up the ‘Salesforce Product Backlog’ and will be ‘groomed’
before entering any sprint and being worked on by the Salesforce team.

The Salesforce product owner’s responsibility is to prioritize the items in the
‘Salesforce Product Backlog’ by working with the various stakeholders and ensuring
that the requirements are well documented. Each item in the backlog must have an
effort and priority assigned to it to size the tasks.

Sprint Planning and Scope

Before each sprint, there will be a sprint planning session where priority items in the
‘Salesforce Product Backlog’ are properly groomed and added to the sprint backlog.

Once the scope of the sprint is decided, items should not be added unless necessary.
The product owner or scrum master’s responsibility is to ensure there is no
unnecessary scope creep. In only critical circumstances should items be added to an
ongoing sprint.

This practice can be time-consuming at first but is critical to understanding
departmental needs and planning for future success. Operating within a ‘Salesforce
Product Backlog’ and sprints will also allow all incoming requests to be prioritized and
visible across the organization. For more information on this topic, see How to Create
a Salesforce Action Plan.

Salesforce Governance

11

https://www.cloudkettle.com/blog/how-to-create-a-salesforce-action-plan/
https://www.cloudkettle.com/blog/how-to-create-a-salesforce-action-plan/

Tips for Success

Organizations often start with an informal process for requesting Salesforce changes

(email requests, instant messaging a Salesforce administrator, etc.). However, this is

not sustainable long-term and will often lead to overlapping functionality and a slower

velocity of changes made.

For optimal results, a standardized process must be documented, followed, and be

championed by the leadership team. The process should include these essential

steps�

�� Make formal requirements gathering documen�

�� Prioritize the requirements in a project management too�

�� Judge the effort needed for all requirement�

�� Have a planning session to determine what will be worked on during the next

sprin�

�� Work on a set of requirements and only those requirements for each sprin�

�� Inform all stakeholders of what is being worked on in each sprin�

�� Business Requirements Document Template

The following table can be used as a starting point for the Business Requirements

document.

12

Salesforce Governance

13

Salesforce Governance

Question Response

Requestor Name:

Requestor Department:

Date of Request:

Type of Request (Bug, Enhancement,
Question, Maintenance):

Description of Request:

(note pain point with the current
process, if applicable)

Current Functionality:

Business Value:

Business Impact (High, Medium, Low):

Business Impact Justification:

Current workarounds (If applicable):

Salesforce Sandboxes

Salesforce subscriptions come with the ability to create “Full” and “Partial” Sandboxes
that are recreations of the full production instance of Salesforce, but with either a

complete (“Full”) or partial (“Partial”) replica of data. Depending on the Organization’s
Edition and agreement with Salesforce, the quantity and availability of Sandbox will

change or be unavailable. These two types of sandboxes will contain data about
customers and prospects.

Should privacy and access to this data be a concern, A license for Salesforce Data

Mask can be purchased to anonymize sandbox data. For more information on this
topic, see Salesforce’s documentation.

https://help.salesforce.com/s/articleView?id=sf.data_mask_overview.htm&type=5

Salesforce allows for the refreshing of sandboxes, which wipes all existing data in a

Full or Partial sandbox and creates a new version that replicates what is in the

production instance. At that time, any data that was deleted from the production

instance will cease to exist in the sandbox.

A example of a company’s sandbox refresh policy is as follows:

Hotfixes

A best practice we share with our clients is to use a partial copy sandbox as part of

the company’s deployment strategy. Having a partial copy sandbox that is untouched

and always kept in sync with production provides an environment with a good amount

of data and the same metadata configuration as Production. This is an ideal

environment to test ‘hotfixes’ before they get pushed to production.

14

Salesforce Governance

Type Name Use Refresh

Production CK Sample Org � Live Environment

Full Sandbox CKUAT � User Acceptance Testin�
� Stagin�
� Performance Testing

Insert full sandbox
refresh period

(begin with 6 months
and reduce)

Partial Copy Sandbox CKHotfix

CKPartial

CKTraining

� Trainin�
� ‘hotfix’ testing

 30 days

Developer Pro Sandbox IntegTest � Merge changes from all
developer sandboxe�

� Integration Testing

After every major
release

Developer Sandbox CPQTesting

SimoneDev

� Development and testing
in an isolated environment

After every
major release

A “hotfix” is a bug or issue found by users from the latest release that can’t wait for

the next release to be fixed and therefore requires immediate attention. These are

often found in the middle of the next release cycle, meaning the sandboxes are out of

sync with production. However, developers can work on the fixes in the partial copy

sandbox, as it is a metadata replica of production, and not have to worry about any

conflicts from the current sprint.

An essential requirement of a strong release management strategy is establishing a

release cadence. The release cadence should have a set of meetings that ensure all

required stakeholders have the appropriate understanding of the scope of each

deployment. It is best to do deployments in the middle of the week and not on Fridays

as issues may come up during the weekend and there will be limited resources to help

troubleshoot. Typical cadences are bi-weekly or monthly depending on the

organization's needs.

Below is an example of a bi-weekly cadence:

A deployment will happen every other week, at an agreed upon time by all

stakeholders. A bi-weekly deployment meeting will be held to mitigate the business

impact of unforeseen errors or issues during a release. It is the responsibility of the

Salesforce Product Owner to communicate the deployment window to all users and

ensure all required stakeholders have the appropriate understanding of the scope of

each deployment. Deployments will occur on Tuesdays, Wednesdays, or Thursdays to

allow for resources to be available to help troubleshoot if issues arise.

To support the release cadence, a few meetings and artifacts are needed�

� A log of all the proposed changes will be maintaine�

� Two business days before deployment, there will be a meeting to discuss the ready

changes, any dependencies, and manual steps that need to be undertake�

� After this meeting, the log would be submitted to the Salesforce Deployment Lead.

No new items can be added to the release’s deployment after this point. All those

who have access to make changes to the system must be notified of all the

components in the deployment.

Release & Meeting Cadence

15

Salesforce Governance

The figure above is a schedule of a two-week sprint in which�

� The build is scheduled to be completed by the end of the first week�

� The second week is spent on deployments to the full copy sandbox, testing, and

bug fixes related to the development.

If there are issues that arise during performance testing and UAT, the developers will

correct these issues in their development sandboxes, promote the changes as per the

standard process and re-submit the functionality for UAT until it passes.

User Acceptance Testing (UAT)

End-users will test the functionality in a sandbox environment before it is deployed to

production. Users will be given a document that outlines the steps they need to

execute and will provide any feedback regarding the test cases through this

document.

Communication Plan

As part of the deployment process, the Salesforce Product Owner will announce a

maintenance window well in advance in which users will be unable to access the

system.

16

Salesforce Governance

Additionally, if required, Salesforce Product Owner will schedule training with the

appropriate users to prepare them for new functionality.

Release Notes

Release notes are an effective way to communicate changes that have been made to

the system.

To conclude the Sprint, Salesforce Product Owner will assure there is a release notes

document containing any bug fixes or functionality updates created.

To be effective, release notes need to be written in an easy to understand way.

Release notes for internal users can consist of text, screenshots of the system and

links to video recordings demonstrating new functionality. They should not be

technical, but rather highlight the effects of the changes for end users, highlight new

features or changes in process.

17

Salesforce Governance

Managing technical debt in Salesforce is a challenge almost all enterprises face.

Steep technical debt in Sales and Service Cloud affects Salesforce performance, the

accuracy of data, and the reliability of Salesforce processes.

Technical debt extends beyond code and includes abandoned or overlapping

processes, workflows, custom fields, etc. Technical Debt is classified as either

incurred or evolved. Incurred technical debt is deliberately or inadvertently

accumulated; like using an obsolete method of solving a problem. For example, using

a Salesforce feature that is on the roadmap to be retired.

Evolved technical debt is created over time as the result of changes both in

Salesforce’s platform and your organization’s Salesforce org. For example, when an

organization has to retire a solution because the number of Salesforce contacts has

grown significantly; making the historic solution obsolete.

Having a technical debt reduction policy is a necessary component for decreasing

technical debt and improving data integrity. This template was built for enterprise

teams and should be populated with your organization’s relevant information in the

highlighted areas.

To review our recommendations on Technical debt, please see our blog post on

technical debt and review the attached Technical debt reduction policy.

Technical Debt Policies

Salesforce Governance

18

https://www.cloudkettle.com/blog/how-to-manage-technical-debt-in-salesforce/
https://www.cloudkettle.com/blog/how-to-manage-technical-debt-in-salesforce/

Data Retention and Destruction

Data Quality

As the hub of customer data, Salesforce is a key consideration in security and privacy
compliance frameworks. Having a Data Retention and Destruction Policy is necessary

to comply with many regulatory frameworks, including; SOC 2 and ISO.

It is also best practice for enterprises to minimize the amount of data kept in
Salesforce in case the organization ever experiences a breach. By regularly deleting

data from Salesforce, it will help mitigate both the liability and impact of any potential
breaches. Lastly, having a Data Retention and Destruction Policy helps to improve Org

speed and user experience by eliminating unneeded data.

CloudKettle provides a template for data retention and destruction that can be found
here: CloudKettle’s Salesforce Data Retention and Destruction Policy

A data quality audit should be conducted on a regular basis to ensure that the data in
the org is actionable, clean and accurate. Depending on the integrations and

customization of your Org, the additional items may need to be audited.

This audit would include using tools such as Field Trip to review the population of
fields, and review minimally populated fields (ie: those populated on < 5% of records)

for removal/deprecation or additional training for adoption.

This should include reviewing existing fields for chances to consolidate text fields into
Picklists to provide reportable buckets, opportunities to use mandatory fields, field

dependencies, or validation rules to ensure records always contain at least the
minimal amount of data to be actionable.

Once the Fields are reviewed, Admins should proceed to look at the records -

particularly on high volume objects such as Accounts, Contacts and Leads - with the
goal to identify and merge duplicate records. The effectiveness of current Duplicate

and Matching Rules or third party routing/deduplication tools should also be reviewed
to ensure alignment with current processes and business logic.

Data Governance

Salesforce Governance

19

https://www.cloudkettle.com/wp-content/uploads/2020/07/CloudKettle-Salesforce-Data-Retention-and-Destruction-Policy-Template.docx
https://appexchange.salesforce.com/appxListingDetail?listingId=a0N30000003HSXEEA4

Admins should review all data ingestion points for the org. This data should be

standardized across integrations and areas for review should include: deduplication,

ensuring consistent picklist values, and ensuring only required and actionable data is

coming into the org. For ingestion points such as list loads, ensure that standardized

templates are created and maintained.

20

Salesforce Governance

Metadata Governance covers standards for your organizations for documentation and

naming conventions with Salesforce. Having description fields and proper naming

conventions simplifies maintenance and onboarding time of new team members to

the organization. Below are best practices and general guidelines for metadata

governance:

�� If there is a description field, it should be completed. �

�� The Description must include the purpose of the item in questio�

�� If the component is a helper field for any automation or a requirement for an

integration, a line should be included to indicate where it is used and wh�

�� Integration Example: Used to hold the Contact Signer Look-up for DocuSign

Envelope Template “Approved Quote for client Signature�

�� Flow Example: Helper field to calculate the ARR for the Flow: Total ARR on

Account.�

�� A component installed by a package may be managed and thus the description

and names may not be editable. If the functionality is extended, document this

externally. �

�� If the component is not managed, avoid changing the name/API name to

prevent confusion, update the descriptions as required but differentiate

between the original unchanged description, and custom newly added

description�

�� API Names must always match the Labels�

�� Spelling and Grammar mistakes in Names are unacceptable. Speed should not

take precedence over this. If a mistake is noticed, update it before moving onto

another task�

�� Descriptions & Names should follow proper writing guidelines. Capitalization, full

sentences and no abbreviations.

In general, the names of fields and functionalities must be descriptive, and approved

by the Client. If one is familiar with the org, one should know the purpose by reading

the name.

General Guideline�

Metadata Governance

Salesforce Governance

21

Fields

Formula Field�
�� Writing Formulas: Logic in formulas AND/OR Statements should be indented

according to K&R Style or another agreed upon style. �

�� Comments should be used to explain functionality of any REGEX or complex and

not immediately parseable lines in the formula. This comment is to provide the

context necessary to understand the formula. Specifically in formulas with

multiple outcomes and constraints. �

�� Ie: /* <Comment> *�

�� If the formula logic is complex, but inline comments are not beneficial to the

explanation, using the description field is an acceptable alternativ�

�� If an update to an existing formula is required, add a date in the description and

include the changes made and an “Updated By <NAME>” Tag.

Regular Field�
�� Naming Conventions: Names of fields must be descriptive, and approved by the

Stakeholders. If one is familiar with the Org, one should know the purpose by

reading the name. If this is not possible, recommend a tool-tip for further

clarification.�

�� The Description must include the purpose of the field�

�� The Description must include “Created by <Name>�

�� If the Field is a helper field for any automation or a requirement for an integration,

a line such as the following should be include�

�� Used to hold the Contact Signer Look-up for DocuSig�

�� Helper field to calculate the Automotive Revenue for the Flow: Total Revenue.

22

Salesforce Governance

https://www.kernel.org/doc/html/v4.10/process/coding-style.html

Custom Objects

Automation

Custom objects should be created to extend the functionality of the core objects.

Where possible, CloudKettle strongly recommends that the Standard Objects be used

first and the architecture and data model of Salesforce be preserved.

Creating new custom objects should be reviewed by the architecture review board to

make sure they conform to the Salesforce Data model and the current architecture of

the org.�

�� Naming Conventions: Names of Objects must be descriptive, and approved by the

Stakeholders. If one is familiar with the Org, one should know the purpose by

reading the name.�

�� The Description must include the purpose of the Object.

Flows

Flow Level Name and Descriptions�

�� Naming Flows should follow this convention: <Object Name>: <Descriptive Title�

�� Opportunity: Submit for Approval When Stage and Data Requirements Met,�

�� The description should then read�

�� Submits the Opportunity for Approval when Stage = Negotiating and

Amount > 0 & Discount Requested = True. Created as part of the Deal Desk

Refresh project. Created by Name. �

�� If the Automation is updated in the future update the descriptio�

�� 25/01/2023 – Updated by <Name> to include New criteria Owner <>

IntegrationUser Submits the Opportunity for Approval when Stage =

Negotiating and Amount > 0 & Discount Requested = True. Created as part

of the Deal Desk Refresh project. Created by <name>

Node Level Descriptions�

�� All nodes must have a description that describes the functionality of the node. An

admin familiar with flows must be able to read the description and understand the

purpose of the node and how it fits into the automation as a whol�

�� If you are building a new Flow or conducting a major overhaul of an existing flow,

Created by “Name” is not required at this level, HOWEVER if you are providing a fix

or a minor to an existing flow, it is recommended to add “Updated by <Name>”.

23

Salesforce Governance

Flow Resource Name�

�� Names of variables/formulas/ must be descriptive. If one is familiar with the Org,
one should know the purpose by reading the name.�

�� Descriptions must be populated and explain the purpose of the Resource. An
admin familiar with flows must be able to read the description and understand the

purpose of the resource and how it fits into the automation as a whole�
�� If you are building a new Flow or conducting a major overhaul of an existing flow,

“Created by <Name>” is not required at this level, HOWEVER if you are providing a
fix or a minor to an existing flow, it is recommended.

Custom Flow Errors Messages �

�� Admins should use the Custom Error Message element (Flow API Version 59.0+)
for before-save and after-save record triggered flows, to display error messages to

explain what went wrong or how to correct it.

Process Builders/Workflow�
�� No new Process Builders or Workflow Rules should be created in client orgs, as

this functionality is being phased out in favor of Flows�
�� If you need to update an existing Automation, add a date in the description and

include the changes made and an “Updated By <Name>” Tag.

�� Change Sets are to be created in tandem with a Configuration Workbook (CWB) to

document the components (Using DevOps Center can simplify this process)�
�� Change Set names should include a reference to the current project as a

descriptive name�
�� Change Set descriptions should include a summary of what is being pushed, as

well as a “Created By <Name>” Tag.

Change Sets�

24

Salesforce Governance

Validation Rule�

Profiles/Permission Sets

�� Writing Validation Rules: Logic in formulas or AND/OR Statements should be
indented according to K&R Style. �

�� Comments should be used to explain functionality of any REGEX or complex and
not immediately parseable lines in the Validation Rule where the context is
necessary to understand the functionality. Specifically in areas with multiple
outcomes and constraints. �
�� Ie: /* <Comment> *�
�� If the logic is complex, but inline comments are not beneficial to the

explanation, using the description field is an acceptable alternativ�
�� If you need to update an existing rule, add a date in the description and include the

changes made and an “Updated By <Name>” Tag.

With Permissions on Profiles being retired in Spring ‘26, CloudKettle recommends that
Permissions be Managed via Permission Set Groups.

The following will be moved to Permission Sets�
� User permissions (system and app permissions�
� Object permissions (object Create, Read, Update, and Delete [CRUD]�
� Field permissions (field-level security [FLS]�
� Tab�
� Record types (not defaults�
� Apps (not defaults�
� Connected app acces�
� Apex classe�
� Visualforce page�
� Custom permissions

The following will remain on the Profil�
� One-to-one relationships: Login hours/IP ranges�
� Defaults: Record types, apps�
� Page layout assignment: The future is App Builder/Dynamic Forms, so Salesforce

will not invest in bringing page layout assignment to permission sets.

Descriptions should be populated by Admins to indicate the use case above.

25

Salesforce Governance

Permission Set & Permission Set Groups

Both Permission Sets and Permission Set Groups should be Named for the Purpose

they serve and with a set naming convention to make parsing permission clear.

Descriptions must be populated and explain the purpose of the Permission Set/group.

An Admin familiar with security must be able to read the description and understand

the purpose of the permissions and how it fits into the Permission model for the org

as a whole.

For an example of some best practices around managing user permission, review this

following article from Salesforce: Admin Best Practices for User Management

Best Practice Recommendations for Permissions

A permission set group should be used to make a bundle of permission that’s

assigned to a subset of users, a role or a person.

A permission set should be used to grant a specific level of Access to an object, set of

permissions. Think of this as a building block that you would need to make up a

component of multiple functional Permission Groups. Or alternatively as the most

granular one off set of permissions that you need to assign to certain users.

CloudKettle recommends that Permission set Groups be created for Roles at larger

organizations:

For example the PERSONA:SalesUser Permission set group contains the basic

permission for that role.

If required PERSONA:SalesUser Permission set group can then be referenced in a

larger permission Set Group:

PERSONA:SalesUser:AMEA which contains additional permission sets for fields and

features used only by AMEA.

PERSONA:SalesUser:EU would also contain the PERSONA:SalesUser Permission Set

Group as well as an additional number of permission sets for fields and features used

only by AMEA.

26

Salesforce Governance

https://admin.salesforce.com/blog/2022/admin-best-practices-for-user-management

Integration User

AppExchange/Integration Policy

An Integration User is a dedicated (not used by any human) full Salesforce license

that has a custom Profile, Permission Set and is used for any third party integrations

like marketing automation, CTIs, data enrichment tools, and even your own custom

API work that ties in with your instance. Integration Users are particularly important

for the tools listed above because they tend to update thousands (or tens of

thousands) of records a day and have a huge impact on your instance.

In short, having an Integration User is a more secure, auditable way to move data into

and out of your instance without relying on an existing user’s license. Salesforce

provides you with up to five free integration user Licenses depending on your orgs

edition. To learn more on how to leverage these licenses, read our blog on the

Integration User License.

CloudKettle recommends that every org has at least one integration user for third

party integrations. For larger high volume integration such as Marketing Automation

Platforms, CloudKettle recommends a separate integration user for auditability.

CloudKettle recommends that a Steering Committee be in charge of approving

integrations with Salesforce. AppExchange Apps and other third party integrations are

excellent ways of effectively and efficiently adding functionality to your org, but can

come with significant monetary, functional and maintenance considerations.

CloudKettle recommends that your company's procurement process be adapted and

applied to Salesforce integration to include a technical analysis of the product and its

effect on the architecture of the Org, as well as predicted maintenance costs.

When a solution is settled upon, ownership of the integration must be assigned to a

Stakeholder as well as resources budgeted for maintenance of the integration.

Integration Policy

Salesforce Governance

27

https://www.cloudkettle.com/blog/introducing-the-salesforce-integration-user-license/

Application Allow Listing

By default, any user can authorize an integration into Salesforce with the correct

permissions. This can cause issues, as any user can connect to any application

regardless of that application’s required data permissions, security infrastructure, etc.

By not restricting application access via whitelisting, organizations expose

themselves to the following risks�

� Users authenticating into unapproved applications that violate security policie�

� Unapproved users exporting and modifying data through applications, such as

Dataloade�

� Granting data access to unapproved applications that otherwise should not have

access to Personally Identifiable Information

CloudKettle recommends enabling Application Allow Listing to increase the security

of the org for the above reasons. By enabling Application Allow Listing, Admins

control which Users and Profiles can access specific Connected Apps in Salesforce,

allowing them to restrict application access to tools reviewed and approved by the

organizations Admins.

Documentation and Maintenance

CloudKettle recommends that all integrations be documented and included in the Org

Handbook, Data Flow Diagram and architecture diagram depending on the complexity

and contents of the integration.

For larger integrations such as marketing automation, enrichment or lead routing

platforms CloudKettle recommends that a regular meeting be established between

the Stakeholder and the Salesforce team to review the current state of the integration

as well as any pain points or changes required. The cadence of these meetings will

depend on the needs of organizations, in general CloudKettle recommends a quarterly

check-in.

28

Salesforce Governance

Apex Classe�
�� Before writing Apex code, consider if there are any viable declarative alternatives

first. Requirements that do not consist of complex logic or complicated batch

processing can likely be done with Flow Builder. See Record-Triggered Automation

for more information�

�� Follow the official naming conventions�

�� All Apex code must be bulkified. See this article for a list of key best practices�

�� Be mindful of governor limits�

�� No SOQL queries in for loop�

�� No DML statements in for loop�

�� Avoid heap size limits by using SOQL for loops. Only query for the fields

required in your code. Help documen�

�� Take into account the CPU time limit per transaction and make use of

asynchronous apex whenever possible. Help documen�

�� Full list of Execution Governor limits�

�� Add code comments to explain what your code does. Read the “Code comment

rules” section for more details�

�� Prefer using smaller methods to larger ones. This makes the code modular and

easier to read�

�� Run the PMD static code analyzer which is distributed with “Salesforce Extension

Pack (Expanded)” VsCode extension. This will highlight any potential areas where

best practices are not followed, including security guidelines.

Code comment rule�
�� The start of each source file should include a comment with information about the

class authorship, creation date, and a brief description of its purpose�

�� Each apex method should include these tokens if applicable: @author,

@description, @param, @return.

Code Standards Documentation

Salesforce Governance

29

https://architect.salesforce.com/decision-guides/trigger-automation
https://quip.com/MW5cAPVwat8k#JCIACA8Q963
https://developer.salesforce.com/ja/wiki/apex_code_best_practices
https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/apex_gov_limits.htm
https://help.salesforce.com/s/articleView?id=000385712&type=1
https://help.salesforce.com/s/articleView?id=000387833&type=1
https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/apex_gov_limits.htm
https://pmd.github.io/pmd/pmd_rules_apex.html
https://trailhead.salesforce.com/content/learn/trails/security_developer

30

Salesforce Governance

�� Comments that do not fall under point 1. or 2. should express intent and provide

meaningful information that is not obvious by simply reading the code. With that

being said, we should still analyze if the code can be rewritten in a way that

removes the need to add an additional comment�

�� Comments are difficult to maintain. The older a comment is, the more likely it is

that it conveys inaccurate information�

�� Code evolves, new requirements are implemented, other parts are deprecated

etc. Chances are comments will not be accurate if not properly maintained�

�� Unless required by the project in development, comments should not be used as a

tool for tracking historical changes, otherwise the comments portion of the code

becomes longer than the code it describes. Version control systems can be used

to address this need�

�� Avoid writing TODO comments. Oftentimes they are forgotten or ignored. Create a

technical debt ticket in an issue tracking system such as Jira�

�� The standard javadoc can be used as an example to document code.

Unit test�
�� All Apex classes must have a corresponding test class�

�� Code coverage must be as close as possible to 100%�

�� Where applicable, test the following scenarios in your unit tests�

�� Single record�

�� Bulk operation�

�� Positive test case�

�� Negative test case�

�� Testing using specific users (non-admin�

�� Every test method must use the new Assert class to validate that the expected

outcome does indeed match the results of running the unit test�

�� Always include an assertion message that clearly explains why the assertion

failed�

�� A single assertion per test method should be used to test only one aspect of

the functionality at a time. Exceptions to this rule are allowed when the test

setup is complex, or multiple assertions are used to test the same concept.

https://en.wikipedia.org/wiki/Javadoc
https://developer.salesforce.com/docs/atlas.en-us.apexref.meta/apexref/apex_class_System_Assert.htm

31

Salesforce Governance

�� Do not use the SeeAllData=true annotation. Unit tests should not rely on existing

data to test functionality�

�� A Test Factory class should be used to help set up test data. This ensures that any

future changes can be made directly in the factory class, reducing the risk of

having to go through multiple test classes to fix how the data is set up�

�� Use Test.startTest() and Test.stopTest() to reset the governor limits before

executing the code that needs to be tested�

�� Do not hardcode Ids�

�� Follow Salesforce’s Testing Best practices

Resource�
�� Official Apex Developer Guid�

�� Sample projects: Code samples and SDK�

�� Solutions and design patterns for common use cases: Apex recipe�

�� Best practices as outlined by the Success Cloud Coding Conventions Trailhead

module

https://developer.salesforce.com/docs/atlas.en-us.216.0.apexcode.meta/apexcode/apex_testing_best_practices.htm
https://resources.docs.salesforce.com/latest/latest/en-us/sfdc/pdf/salesforce_apex_developer_guide.pdf
https://developer.salesforce.com/code-samples-and-sdks
https://github.com/trailheadapps/apex-recipes
https://trailhead.salesforce.com/content/learn/modules/success-cloud-coding-conventions/improve-your-apex-code-sc

32

Salesforce Governance

Are you interested in learning how CloudKettle can help you
implement a Center of Excellence or enhance your overall

Salesforce governance?

Talk to us today!

CloudKettle.com

1-800-878-4756 ext 202

Conclusion

There are many areas of Salesforce which require oversight and governance. Setting

up a Center of Excellence within your organization is one of the best ways to start

developing policies that are tailored to your company’s unique needs.

Release management, technical debt, data governance, metadata governance,

integrations, and code standards are all topics for consideration when it comes to

policies and documentation. By reviewing this handbook, your organization will be

equipped with the tools to begin the creation of these important areas of governance.

